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The crystal structure of RbHa(SeO3) 2 has been determined in the low-temperature phase (space group P21) 
with neutron diffraction. The crystal undergoes an improper ferroelectric phase transition at 158 K and the 
unit cell is doubled below the transition temperature. This transition is induced by the condensation of a soft 
mode at the Brillouin zone boundary. Imposing the symmetry of the soft-mode eigenvector on the static 
displacements from the high-temperature positions (space group P212121) results in a reduction, by a factor of 
four, of the number of positional parameters required to describe the low-temperature structure. The crystal is 
constructed of two types of chains consisting of S e O  3 groups connected by hydrogen bonds, and the order 
parameter for the transition is shown to be the rigid rotations of the SeO a tetrahedra belonging to one type of 
chain. The atomic displacements necessary to produce the observed spontaneous polarization are shown to 
be too small to be observed in the present experiment, and the precise mechanism responsible for the 
spontaneous polarization remains unknown. 

I. Introduction 

The family of crystals belonging to the alkali-metal tri- 
hydrogen selenites A H3(SeO3) 2 has recently been 
shown to display interesting properties with respect to 
phase transitions, hydrogen bonding and ferro- 
electricity (see, for example, Shuvalov, Ivanov, Gor- 
deyeva, & Kirpichnikova, 1969). In many respects the 
Rb compound is unique within the family. It undergoes 
a ferroelectric phase transition at about 158 K which is 
nearly second order. In contrast to other family 
members, proton ordering seems to play no role in the 
phase transition, since there is essentially no isotope 
shift in the transition temperature T c (Shuvalov et aI., 
1970) and a positive gradient of T c with respect to 
pressure (Gesi, Ozawa & Makita, 1973). A negative 
gradient is expected for proton ordering since increas- 
ing the pressure lowers the barrier between the two 
proton sites. 

The spontaneous polarization of RbH3(SeO3) 2 is not 
the order parameter of the phase transition, and the 
crystal belongs to the group of improper ferroelectrics 
(Shuvalov et al., 1969). This is indicated by the 
extremely small value of the spontaneous polarization 
of 0.013 ~tC cm -2 (Shuvalov et al., 1969) (cf. ~5 ~tC 
c m  - 2  for KDP) and proved by the observation of a 
condensing zone-boundary mode (Grimm & 
Fitzgerald, 1978) which leads to a doubling of the c 
axis. The corresponding superlattice reflections have 
been shown to exist by Makita & Suzuki (1974) and 
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independently by Aknazarov, Shekhtman & Shuvalov 
(1974) with X-rays. With neutrons, the temperature 
dependence of the order parameter, obtained from the 
superlattice intensities, has been discussed by the 
present authors (Fitzgerald & Grimm, 1977). How- 
ever, to our knowledge no attempt has been made to 
determine the structure of the low-temperature phase. 
To understand the mechanism responsible for the phase 
transition it is helpful to know the low-temperature 
structure. At room temperature the structure of 
RbHa(SeO3) 2 has been investigated by Tovbis, 
Davydova & Simonov (1972) and by Tellgren & 
Liminga (1973) with X-ray diffraction. The crystal 
belongs to the orthorhombic space group P212121 (D 4) 
and contains four formula units per unit cell of 
dimensions" a = 5.9192 (2), b = 17.9506 (5), c' = 
6.2519 (3)/~. In the following we refer to the doubled 
low-temperature cell with c = 2c'. The crystal may be 
thought of as being built up of two chains running in the 
a and e directions. These chains consist of SeO 3 
pyramidal groups interlinked by hydrogen bonds. The 
third hydrogen bond of the molecule connects the two 
chains thus forming a three-dimensional network 
(Fig. 2). 

The present paper describes the method and the 
results of a structural analysis of the low-temperature 
phase of RbH3(SeO3) 2, obtained with neutron diffrac- 
tion. This paper is divided into five sections. In § II, the 
symmetry constraints on the soft-mode eigenvector are 
investigated (details are presented in the Appendix). 
This helps to reduce the number of parameters 
describing the structure of the low-temperature phase. 
§ §II I  and IV deal respectively with the experiment and 
the details of the structure refinement. The results of the 
refinement are presented and discussed in § V. 
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II. Symmetry  eonsiderat ions  

Knowing the space group of the high-temperature 
phase and the wave vector of the soft mode of a second- 
order displacive phase transformation, one may in- 
vestigate the transformation properties of the soft-mode 
eigenvector to gain information about the low- 
temperature structure. This assumes that the difference 
between the high and low-temperature structure shows 
the soft-mode eigenvector symmetry. The validity of 
this assumption has been proved for many second- 
order displacive phase transitions. The symmetry 
operations of space group P212~2 ~ are: 

x,y,z;x + ½,-Y+½,--z;--x,Y+½,-z +½; 

--x+½,--y,z +½. (1) 

The group of the soft-mode wave vector kzz = e*/2 
contains all four rotational elements R s of the space 
group, and has only one two-dimensional represen- 
tation (Kovalev, 1965), 

Rl 

r(s) 
where 

Ox=(01 ~) o , - - ( 0 0  i)  

and satisfy the relations: 

R2 ] R3 R 4 

o z - - iov  O x 
(2) 

OX2 ~___ Oy2 = O2 = e; OXOy = --%O,, = i o  z. (4) 

This representation means that all 3r modes are doubly 
degenerate for this wave vector because of spatial 
symmetry. This degeneracy (Levanyuk & Sannikov, 
1970) is expected for an improper ferroelectric because 
otherwise the spontaneous polarization Ps cannot 
reverse its sign. The reason for this is the quadratic 
coupling to the order parameter r/which in essence is 
represented by the soft mode eigenvector. Thus, Ps has 
to be proportional to terms like r/l r/2 or r/E- r/22 
where r/I, r/2 represent the two eigenvectors associated 
with the degenerate soft-mode eigenvalue. It is clear 
that a twofold degeneracy is merely the minimum 
requirement. 

An arbitrary basis vector has 3r (= 144) complex 
components and will be written 

E (2) = [E,~(K, x,2)] (5) 

where a denotes the Cartesian component, K labels the 
12 atoms of the molecule, x denotes the molecule 
created by the xth symmetry operation and 2 labels the 
two degenerate modes. It is understood that E(;t) 
belongs to the soft mode. Because the symmetry 
operations applied to E(2) will not mix atoms of 
different K, the index K is suppressed in the following 

and one may think of E (2) as a 12-component vector 
(x = 1 . . .  4) of the form 

E()~) = [D~()~), R2D2()].), R3D3()~), R4D4(~,)] (5a) 

where for convenience the components E,~(x,2) are 
written in the form R~D~(2). 

By means of projection-operator techniques one can 
reduce the number of independent components of the 
basis vector (5) with the help of representation (2) as 
described by Maradudin & Vosko (1968). The essential 
steps of this somewhat lengthy analysis are given in the 
Appendix. The result is: 

E ( I ) - -  {D1, R2D1, R302,--R4D2 } 

E(2) = {D 2, --R2D 2, R3D ,, R4D , } 
(6) 

where D~ and D 2 are arbitrary, real displacement 
vectors. Such a pair of displacement vectors has to be 
defined for each atom K of the molecule. The D are real 
owing to time-reversal symmetry. Also, time-reversal 
symmetry does not produce any further degeneracy for 
the soft-mode wave vector. 

The basis vectors E(2) do not necessarily represent 
the eigenvector of the soft mode. One merely may 
suppose that the low-temperature structure is produced 
by the condensation of a linear combination e (~.) of the 
basis vectors, 

e().) = aE(1) + fiE (2). (7) 

The low-temperature structure is known to be mono- 
clinic with b the unique axis (Shuvalov et al., 1969). 
This means that the point operation R 3 is conserved in 
the low-temperature phase. The consequences of this 
fact are seen from the following list of low-temperature 
positions r~ for one kind of atom 

r~ = R, (p  + d , )  + (0 ,0 ,0)  

~ , )  r2 = R2(P + d2) + (½,1 0 
1 1 r 3 ---- R3( p + d3) + (0,~,~) 

1 1 r 4 R4( p + d4) + (~,0,;~) 

r 5 = R, (p -  d,) + (0,0,½) (8) 
[1 1 lh r6 R2 (P --  d2) + k] ,2 , ] !  

1 3 
r 7 = R3( p --  d3) + (0,~,~) 

1 3 r 8 = R4( p - -  d4) + (~,0,;~) 

where p represents the high-temperature position and 
the primitive translations are written in terms of the 
low-temperature cell. The form of (8) expresses the fact 
that the condensation of a phonon with wave vector k22 
= (0,0,½) produces the low-temperature structure 
(Grimm & Fitzgerald, 1978) since 

r~+ 4 = r ~ -  2 R~p + (0,0,½). (9) 
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The screw rotation around the y direction ( -x ,  y + ½, 
- z  + ¼) interchanges atoms x and x + 2, as can be seen 
from (8). This gives rise to two possible constraints on 
the d~. One has either 

d, = d~+ 2 or d~ = - -dx+ 2. (10)  

Application of (10 to (6) and (7) gives tt = flor tt = -ft.  
Therefore, the soft-mode eigenvector has to be of the 
form 

where 

e(1) = (D~, R2D ~, RaD' 1, R4D ~) (1 la) 

e(2) = (D~, R2D i, --R3D ~, --R4D i) (1 lb) 

D~ = D 1 + 0 2 and D~ = D 1 - -  0 2. 

The task of obtaining the low-temperature structure by 
experiment seems at first sight to be difficult because of 
the high number of atoms per asymmetric unit. The 
high-temperature structure has already 12 atoms in the 
asymmetric unit compared with 48 below T c because of 
the loss of symmetry and the doubling of the unit cell. 
However, using the symmetry considerations leading to 
equation (1 l) one merely has to determine 24 atomic 
positions, represented by the D',  to describe the low- 
temperature structure. Equation (11) shows that there 
will exist two domains in the low-temperature structure, 
corresponding to the condensation of either e(1) or 
e(2). 

the monoclinic angle differs only by approximately 40" 
from 90 ° (Ivanov, Tukhtasunov & Shuvalov, 1970). 
Therefore, one can either introduce a domain parameter 
into the refinement program or sum up odd reflections 
(see below) which are related by R2(C2x), because this 
sum is independent of the domain distribution (Fitz- 
gerald & Grimm, 1977). We decided to follow the first 
possibility because of the better ratio of the number of 
fitted parameters to the number of observations. 
Restricting the least-squares fit by unit-weight isotropic 
extinction correction (Coppens & Hamilton, 1970) and 
isotropic Debye-Waller factors, the fit gave an R factor 
of 5%. The refined domain parameter showed the 
crystal to be entirely in one orientation corresponding 
to the eigenvector e (1) (see also Fitzgerald & Grimm, 
1977). 

The essential features of the phase transformation 
can be made clear by looking at the difference between 
the high and low-temperature structures. A pseudo 
high-temperature structure, in the following referred to 
as the 'even structure', can be obtained from the present 
data measured at 112 K by refining the data without 
the superlattice reflections. This is possible because of 
the smallness of the atomic displacements R~d~ from 
the high-temperature positions. The structure factor can 
be written 

12 

F ( Q ) =  Z bK(Q)fK(Q) (12) 
K = I  

III. Experimental 

The present experiment was performed at the High- 
Flux Reactor in Grenoble with the four-circle diffrac- 
tometer D l0 (ILL, 1974). A Cu 200 reflection was used 
to produce monochromatic neutrons of wavelength 2 = 
1.439/~. Excellent crystals, having a mosaic width less 
than 1', were grown by H. Zimmerman;* the one used 
had a volume of approximately 6 mm 3 and a natural 
habit, with a transmission of 80% corresponding to an 
effective thickness of the sample of 1 mm and a total 
scattering of 1.8 cm -1. 1154 reflections were obtained 
at 112 K, and corrected for background and Lorentz 
factor. 611 reflections were non-equivalent. 

IV. Structure refinement 

For the refinement of the structure a short version of 
the XRAY 70 system, called X F L S  (Klar, 1975), was 
used. This least-squares program had to be modified in 
order to include the effect of domains and the 
constraints due to equation (11). 

There is no chance in such an experiment of 
separating the reflections of different domains, because 

* Max Planck Institut f/Jr Medizinische Forschung, Heidelberg, 
Federal Republic of Germany. 

where Q represents a reciprocal-lattice vector, bK(Q) 
represents the scattering length and the Debye-Waller 
factor. 

8 

f ( Q ) =  7 exp(iQr~) (13) 
~ = 1  

represents the contribution of the Kth type of atom to 
the structure factor. Inserting (8) into (13) one obtains 
for 'even' reflections: 

4 

f ( h , k , 2 l ) =  2 ~ exp[iQ(R~p + V'~)]cos QR~d~ (14) 
K = I  

and for 'odd' reflections: 
4 

f ( h , k , 2 l  + 1)= 2i ~ exp[iQ(R~p + V')] sin QR~d~. (15) 

For small displacements, d~, the cosine in (14) can be 
replaced by unity and thus the refinement based on 
those reflections with l even would result in a pseudo 
high-temperature structure referred to as the even 
structure in the following. One expects small displace- 
ments d~ since all critical properties, like the anomaly in 
birefringence, the shear angle (Ivanov, Tukhtasunov & 
Shuvalov, 1970), the spontaneous polarization 
(Shuvalov et al., 1969) and the magnitude of the super- 
lattice intensities are small. The even structure was 
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determined in the first stage of refinement and gave an 
R factor of 4%. Besides the position p, the isotropic 
Debye-Waller factors and an isotropic extinction coef- 

ficient were varied. 
In the second stage, including now the odd reflections 

(superlattice), only the atomic displacements d~ were 
fitted. The number of independent displacement vectors 
d~ per atom of type K was reduced from eight to two 
with the symmetry constraint (11). This fit resulted in 
the already mentioned R factor of 5 %. 

V. Results and discussion 

Strictly speaking, constraint (11) is valid only for 
infinitesimal displacements d~. Therefore, it would be 
desirable to evaluate the validity of the constraints; but 
the number of parameters would be a factor of four 
larger and the test requires the collection of more data 
than obtained in the present experiment. However, as 
argued above, there is other evidence that the d~ are 
small. 

Also, if the spontaneous polarization results from a 
displacement of charges rather than a charge redistri- 
bution, then the observed magnitude of 0.013 l~C cm -2 
would correspond to a displacement of only 2.6 x 10 -3 
,t~ along the o axis per molecule. Thus it seems 
reasonable to make the further assumption that the 
ferroelectric component of the d~ can be neglected. 

The results of the first stage of refinement are listed in 
Table 1. They describe the even structure which has the 
full symmetry of the high-temperature phase. The 
atomic positions are compared with the results of 
Tellgren, Ahmad & Liminga (1973) at room tem- 
perature. In an unpublished report, which has recently 

come to our attention, TeUgren & Liminga (1975)have 
determined the H positions at room temperature with 
neutron diffraction. 

In order to show the main displacements due to the 
phase transformation the even structure [likewise the 
results of Tellgren, Ahmad & Liminga (1973) could 
have been taken] is compared in Table 2 with the 
results of the second stage of refinement. Atoms 
labelled by 1 and 6 are related by the symmetry 
operation (x + ½, - y  + ½, - z  ~ ½) in the even structure. 

The difference between the two structures gives the 
displacement vectors D'~ and D~ which were introduced 
in (11). These vectors are listed in Table 3. For the 
main displacements one finds 

D; _ D ;  = D. (16) 

This observation imposes yet another constraint on the 
displacements due to the phase transition. This can also 
be seen from Fig. 1. This figure shows the superposition 
of the even and the low-temperature structure. The 
main displacements are depicted by arrows. The arrows 
for molecule l are related to those of molecule 6 by 
the point operation R 2, in accordance with (16). It must 
be stressed that this equality is not imposed by the 
symmetry of the soft mode. That this equality is 
physically meaningful can be shown by converting the 
positional changes, shown in Table 2, into bond lengths 
and angles. Then one sees that the S e O  3 groups remain 
essentially undistorted by the phase transition. Also, the 
geometrical point of gravity of the SeO 3 groups does 
not change during the phase transition. Thus, the main 
displacements D of Table 3 (SeO 3 groups with even 
indices) can be represented by a pure rotation. For the 

x ~  

036( ~ 6 Rbl 

© 
Se16 C) H36 

Rb6 031 v,, ~ .~  

051 

a 1 c,,~ 
Y Y 

0056 Hff 

Rbl 
© 

H 3 6  

061 ?0/.6 

"-~ o2~ ~ 

II "~ Se26 
041~ 066 

H31 

1 

- - - ~ z  

Fig. 1. Superposition of the low-temperature structure and the even structure of RbH3(SeO3) 2. The arrows show the major displacements 
due to the phase transition. The shaded atoms represent the even positions. The labelling scheme is as follows: OKs denotes the xth 
oxygen atom created by fhe sth symmetry operation applied to O(1)l [O1 1], etc. For Rb there is no K label. 
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g roup  a r o u n d  Se(2)1,  the ro ta t ion  angle is ca lcu la ted  to 
be - 7 . 1  o wi th  the ro t a t ion  axis N given by  

N = (0 .1032 ,  0 . 9 3 4 1 ,  0 . 3 4 1 6 )  (17) 

wh ich  is no rm a l i zed  to un i ty  with the c o m p o n e n t s  given 
in relat ive units.  

I t  then  b e c o m e s  clear  tha t  the  d i sp lacemen t s  o f  the  
g roup  o f  molecule  1 are  re la ted  to those  o f  molecule  
6 via the h y d r o g e n  b o n d  fo rmed  by  H(2)  (see Fig. 2). 
The  ro ta t ions  o f  the o ther  SeO 3 g roups  can  be 
genera ted  with the  e igenvec tor  e(1)  (see equa t ion  1 l a ) ;  
the  resul ts  are shown  in Fig. 2. It  can  thus  be seen f rom 

Table  1. Atomic parameters after f irst  stage o f  refinement 

x y z 
Tellgren et aL Tellgren et al. Tellgren et aL 

Even (1973) Even (1973) Even (1973) (U 2) 
(x 104) (x 105) (x 104) (x 105) (x 104) (x l0 s ) /~2 (x 104) 

Se(l) 2143 (4) 21630 (14) 3950 (2) 39527 (4) 1489 (3) 14788 (6) 156 (10) 
Se(2) 7311 (3) 73113 (14) 2428 (2) 24215 (4) 828 (4) 8439 (6) 183 (9) 
Rb 2646 (4) 26034 (15) 821 (3) 8289 (4) 1157 (3) 11699 (7) 242 (11) 
O(1) 1972 (5) 18958 (119) 4193 (4) 42057 (28) 125 (4) 1369 (43) 137 (12) 
0(2) 5105 (5) 50635 (98) 2254 (4) 22483 (34) 1610 (6) 15927 (69) 176 (12) 
0(3) 4898 (5) 49313 (87) 4286 (4) 42686 (28) 1739 (5) 17033 (51) 128 (15) 
0(4) 7742 (5) 77185 (96) 3370 (3) 33470 (24) 973 (5) 9452 (44) 107 (11) 
0(5) 733 (5) 8180 (90) 4617 (3) 46152 (28) 2107 (4) 21189 (53) 121 (11) 
0(6) 9565 (6) 95210 (96) 2074 (4) 20750 (31) 1564 (6) 16153 (72) 196 (11) 
H(1) 2797 (10) 4672 (7) 9953 (8) 267 (14) 
H(2) 9821 (11) 2373 (7) 2280 (11) 342 (21) 
H(3) 6086 (9) 3896 (8) 1465 (9) 216 (19) 

Even a = 5.8978 ,~ b = 17.8350/~, c = 12.4294/~, 
Tellgren etal. (1973) a = 5.9192 A b = 17.9506 ,~. c = 12.5038/~, 

Tab le  2. Position vectors o f  molecules (1) and (6) [see equation (8)] in the low-temperature structure and even 
structure 

Because of the constrained fit [equation (9)], the origin is fixed along the y axis. Molecules 5 and 2 can be found with (9). The remaining 
four molecules are obtained in the usual way by applying the space-group operations, x~v,z; ~, y + ½, ;~ of the space group P2, (C 2) after 
shifting the origin by (0,0, _+ 1/8) where the signs refer to domains 1 and 2 respectively. 

Low-temperature positions r~(K) Even-structure positions R,p(K) 

x (x 104) y (x 104) z (x 104) x (x 104) y (x 104) z (x 104) 

Se(l)l 2202 (3) 3952 (2) 1472 (2) 2143 (4) 3950 (2) 1489 (3) 
Se(l)6 -2776 (3) -8944 (2) 3524 (2) 7143 1050 3511 
Se(2)1 7413 (3) 2426 (2) 826 (2) 7311 (3) 2428 (2) 828 (4) 
Se(2)6 2435 (3) -7424 (2) 4174 (2) 12311 2572 4172 
Rbl 2644 (3) 829 (2) 1169 (2) 2646 (4) 821 (3) 1157 (3) 
Rb2 -2324 (3) -5826 (2) 3830 (3) 7646 4179 3843 
O(1)1 1954 (4) 4195 (3) 121 (3) 1972 (5) 4193 (4) 125 (4) 
O(1)6 -2996 (4) -9197 (3) 4885 (3) 6972 807 4875 

0(2)1 5002 (5) 2274 (3) 1474 (5) 5105 (5) 2254 (4) 1610 (6) 
0(2)6 - 0  (5) -7280 (3) 3516 (5) 10105 2746 3390 
0(3)1 4960 (4) 4297 (3) 1694 (3) 4898 (5) 4286 (4) 1739 (5) 
0(3)6 -26  (4) -9294 (3) 3296 (3) 9898 714 3261 
O(4)1 7861 (5) 3366 (3) 993 (3) 7742 (5) 3370 (3) 973 (5) 
0(4)6 2892 (5) -8359 (3) 4009 (3) 12742 1630 4027 
O(5)1 803 (4) 4611 (3) 2110 (3) 733 (5) 4617 (3) 2107 (4) 
0(5)6 -4187 (4) -9609 (2) 2891 (3) 5733 383 2893 
O(6)1 9440 (6) 2051 (3) 1702 (6) 9565 (6) 2074 (4) 1564 (6) 
0(6)6 4445 (6) -7048 (3) 3304 (5) 14565 2926 3436 
n ( l ) l  2767 (6) 4582 (5) -53  (6) 2797 (10) 4672 (7) - 47  (8) 
H(1)6 -2153 (7) -9666 (5) 5058 (5) 7797 328 5047 
H(2)l 9641 (10) 2362 (6) 2410 (10) 9821 (11) 2373 (7) 2280 (11) 
H(2)6 4636 (10) -7366 (7) 2577 (9) 14821 2627 2720 
H(3)l 6141 (6) 3898 (5) 1433 (5) 6086 (9) 2896 (8) 1465 (9) 
H(3)6 1147 (7) -8898 (5) 3555 (5) 11085 1104 3535 
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Fig. 2 that the phase transition affects only chain (2) 
leaving chain (1) essentially unchanged. Along chain 
(2), adjacent SeO 3 groups rotate in opposite senses. 

We wish to thank H. Zimmerman for providing the 
excellent crystals, Drs C. Zeyen and B. Klar for their 
help with the experiment and data reduction respec- 
tively. We also thank Professor H. H. Stiller for his 
critical reading of the manuscript. 

APPENDIX 

This Appendix describes the essential steps of the 
application of the formulation introduced by 
Maradudin & Vosko (1968) to the present problem, in 
order to derive the symmetry constraints on the soft- 
mode eigenvector from (1) and (2) of § II. 

To this end one has to find the so-called T matrices 

Table 3. Differences between the low-temperature 
structure [constrained by equation (11)] and the even 

structure 

Figures are given in units of a, b, c x 10 4 

D', from molecule (1) D~ from molecule (6) 

which represent the action of a symmetry operation on 
a displacement field. In the following we adopt the 
nomenclature of Maradudin & Vosko (1968). The Y 
matrices are defined as 

T~:(x x' Is) = (Rs)~: ~x, Fo(x',s)l 
x exp {ik[x(x)-- Rsx(x')]} (1A) 

where the sth symmetry operation (R s denotes its 
rotational part) of the space group transfers atom a:' 
into atom Fo(x', s). In our case F0(a:',s) becomes 

F0(x ' , s )=  4 - -  15-- (s + x ' ) l -  2c~s~,(fi2,, + fi3,,) (2A) 

if one associates equation (1) to x(x). With k22 = ½ e* 
now taken for k the T matrices can be written 

1 0 0 0 )  

T(1)- -  0 1 0 0 
0 0 1 0 Rl 

0 0 0 1 

0 1 0 O) 
1 0 0 0 R2 

T(2)-- 0 0 0--1 

0 0--1 0 

59 2 _.7 .. _6 _13 ( 0  o ,  o )  
Se(2) 102 - 2  - 2  124 - 4  - 2  0 0 0 i 
Rb - 2  8 12 30 5 13 T(3)  = f:13 
O(1) - 18  2 - 4  32 4 - 1 0  i 0 0 0 
0(2) -103  20 -136 -105 26 -126  0 i 0 0 
0(3)  62 11 -45  76 8 -35  ~ --> ~, 
04> 9 4 0 0 , 0 0 .  
0(5) 70 --6 3 80 - 8  2 (! o) 0(6) -125  -23  138 -120  - 2 6  132 T(4) = 0 --i R4 
H(1) -30 l0 -6 50 -6 - l  1 i 0 
H(2) -180 -11 130 -185 -7 143 
H(3) 55 2 -32 61 2 -20 0 0 0 

(3A) 

• 

• ..'"• . ~ . .  "'• 

~ -  I ~ 

v (b) (a) 
Fig. 2. The mechanism for the creation of the low-temperature phase. The arrows show the axes and sense of rotation of the SeO 3 groups. 

The sections of Fig. I are indicated by frames and represent the projection of a quarter of the low-temperature unit cell. The numbers in 
circles denote the number of the symmetry operation [equation (8)]. SeO3 groups linked together by hydrogen bonds (~) (dotted lines), 
thus forming chains running along x, are indicated by dashed lines. The dash-dotted frame indicates such a chain in projection along x. 
Interrupted dotted lines (a) represent hydrogen bonds, which are connected to SeO 3 groups above and below the figure. That the two 
modes [see equation (l l)] are degenerate can he seen by inversion of the rotation senses of chains 4,7 and 3,8. 
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where a short notation has been used to represent the 
12 x 12 T matrices. (As already mentioned in § II, one 
may restrict the symmetry considerations to one atom 
of the molecule in the present case.) 

The T matrices commute with the dynamical matrix 
and therefore the basis vector E(;t) [see (5)] has to be 
an eigenvector of the T matrices simultaneously. The 
matrix x(s) of the irreducible representation (2) 
describes how the vector E(;t) transforms under the 
action of the T matrices 

2 
T(s)E(2) = ~ ra,a(s) E(2').  (4A) 

.&'=l 

This transformation law gives immediately the sym- 
metry constraints of the basis vector E (2). 

Besides these constraints due to spatial symmetry, 
there are consequences due to time-reversal symmetry 
of the dynamical matrix. For k at the zone boundary, 
as in the present case, the dynamical matrix becomes 
real and thus E (2) may be chosen real and the number 
of components is halved. Equation (3A) shows that 
-I-(3) and T(4) are imaginary, whereas representation (2) 
is real. This would lead to complex eigenvectors due to 
(4A). Thus one has to apply an unitary transformation 
on (2) to arrive at imaginary matrices for x(3) and x(4). 
In terms of the Pauli spin matrices this transformation 
corresponds to a rotation of 90 ° around the (001) axis. 
Then we obtain the new representation 

Rl R2 [ R3 R4 
(5,4) 

"e(s) F. o~ [ io x % 

Insertion now of (5A) into (4,4) gtves immediately the 
basis vectors (6) of § II. 

Besides imposing constraints on the basis vectors, 
time-reversal symmetry can give rise to further 
degeneracies. For the present problem this is not the 
case as can be seen by criterion (5.63) of Maradudin & 
Vosko (1968). 
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